

User Management Api

Implementation Manual

v1.1.0

User Management Api Implementation Manual

Seite 2

Table of Content

1 USER MANAGEMENT API IMPLEMENTATION MANUAL ... 3

2 CHANGE LOG .. 3

3 GENERAL INFORMATION .. 4

3.1 Authentification .. 4

3.2 Loyalty Elements Overview.. 5

4 ACCOUNTS ... 6

4.1 Creating Accounts .. 6

4.2 Getting Account Details ... 6

4.3 Getting Account Balance.. 8

5 IDENTIFIERS .. 9

5.1 Creating Identifiers .. 9

5.2 Getting Identifiers ... 10

6 USERS ... 12

6.1 Creating a new User... 12

6.2 Displaying User properties ... 14

6.3 Updating User Information .. 15
6.3.1 Overwrite all User Data (PUT) ... 15
6.3.2 Overwrite selected User Data (PATCH) ... 17

6.4 Deleting Users ... 19

7 MEMBERSHIPS .. 20

7.1 Creating Memberships .. 20

7.2 Getting Memberships of an Account ... 22

7.3 Getting a specific Membership of an Account .. 24

7.4 Update Membership Optins .. 26

User Management Api Implementation Manual

Seite 3

1 User Management Api
Implementation Manual

For all loyalty-related processes it is important to identify the person the system is
interacting with. The central object in Convercus api for this identification is the account you
can collect points on. This account can be linked to user-data, transactions, bookings, etc.
Every account has a unique identifier, the accountId (e.g. 7d123457-bfa1-4a83-8213-
123456789763), which is the technical ID all those connections are made with.
Additionally, every account can have multiple identifiers (i.e. card-codes, external
identification-codes, etc.), which allow to make a connection to an account without the need
to extract the account-id.
This documentation will explain the creation and maintanance of accounts, users, identifiers
and memberships step-by-step and demonstrate, how all can be linked together to create a
fully-fledged customer profile.

• https://staging.convercus.io/api-docs/swagger-ui.html (Staging Environment)
• https://api.convercus.io/api-docs/swagger-ui.html (Production Environment)

and on the Developer Page

• https://developer.convercus.io/

2 Change Log
Version Change Date Change Log

v1.1.0 2021-03-12
• Minor corrections

v1.0.0 2020-04-30
• Initial document

https://staging.convercus.io/api-docs/swagger-ui.html
https://api.convercus.io/api-docs/swagger-ui.html
https://developer.convercus.io/

User Management Api Implementation Manual

Seite 4

3 General Information
3.1 Authentification
Every request requires a JWT-Token for authentication. The token can be obtained with the
following request:

curl --location --request POST '{{api_url}}/auth/login' \
--header 'Content-Type: application/json' \
--data-raw '{
 "org": "{{org}}",
 "userName": "{{userName}}",
 "password": "{{password}}"
}'

where the following variables have been used:

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{org}}
Organization code for correct mapping.
This value will be given by Convercus.

{{userName}}
User-Name of the api-user.
This value will be given by Convercus.

{{password}}
User-Password of the api-user.
This value will be given by Convercus.

The JWT-Token can be found in the body of the response.

Note, that the token expires after 24 hours. To have a valid token at all times, it is
necessary to generate the token on a regular basis.

https://staging.convercus.io/
https://api.convercus.io/

User Management Api Implementation Manual

Seite 5

3.2 Loyalty Elements Overview
Note, that due to structure of the platform, there are essentially three objects which contain
information about the user, his account and membership. Depending on the set of
information you are interested in, you may need to create and maintain all of them.

• account:
o This is the central element of the loyalty system.
o Every account has its unique accountId. All relevant loyalty-processes can be

linked to this id.
o N identifiers of different id-type may serve as additional external identifiers for

an account. Usually, these identifiers are Cardcodes or external numbers (like
a online-shop-id).

o Accounts can be anonymous, if they don’t have user-information connected
(see membership).

• user:
o This is the object which contains personal user-data like name, address, etc.
o User data may be created independently from an account. Without the

connection to an account (see membership) however, there is no way to
interact with this data in a loyalty context (e.g. you cannot earn points on a
user, but an account.)

• membership:
o This object connects an account to a user object.
o The creation of a membership is typically the result of a completed

registration.
o Optins for the program are related to this object.

A straight-forward implementation of this will be explained in the following.

User Management Api Implementation Manual

Seite 6

4 Accounts
4.1 Creating Accounts
To earn points with the loyalty system, the customer needs an account. This account can
later be linked (with a membership) to a user profile that contains user data. However, this is
optional and loyalty points can be obtained and spent with an (anoymous) account by itself.

To create an account, use:

curl --location --request POST '{{api_url}}/accounts' \
--header 'interaction-id: {{interactionId}}' \
--header 'Authorization: {{jwt_token}}' \
--header 'Content-Type: application/json' \

with

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection to the call origin is made.

The account will be created in the database and is assigned an accountId, which can be
obtained from the response’s header section Location:

Location {{api_url}}/accounts/accountId

4.2 Getting Account Details
As stated before, the account is the center of the whole loyalty system. The accountId can be
used as common connection ID for practically all loyalty connections.

You can get the basic account information with the following request:
curl --location --request GET '{{api_url}}/accounts/{{accountId}}' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'id-type: {{idType}}' \
--header 'Content-Type: application/json' \

https://staging.convercus.io/
https://api.convercus.io/

User Management Api Implementation Manual

Seite 7

with variables

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{accountId}}
ID of the account that needs to be checked.
The ID has to be given in the format, that is dictated by the {{idType}},

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection to the call origin is made.

{{idType}}

Identifier-Type (corresponding to the {{accountId}}).
Available values:

• APPCODE (e.g. A1B2C3D4E5)
• CARDCODE (e.g. V1W2X3Y4Z5)
• EXTERNALCODE (e.g. 123456780123)
• ID (account-identifier, e.g. 7d123457-bfa1-4a83-8213-123456789763)

Note, that it’s possible to get the account-object using the identifier code (e.g.
{{idType}}=CARDCODE, {{accountId}}=V1W2X3Y4Z5) or the accountId itself (e.g. {{idType}}=ID,
{{accountId}}=7d123457-bfa1-4a83-8213-123456789763). Thus, the request may also be used to
extract an accountId from a given Identifier.

The account-object per se is rather slender, only containing an ID (accountId), a program
reference and a status of the account.

{
 "id": "550e8400-e29b-11d4-a716-446655440000",
 "program": "Pgr-A",
 "status": "ACTIVE"
}

If your program allows deactivation or locking of accounts, you should make sure, that
accounts which don’t have the status ACTIVE cannot proceed with the following earn- and
burn-processes. Deleted Accounts will not be responded at all.

https://staging.convercus.io/
https://api.convercus.io/

User Management Api Implementation Manual

Seite 8

4.3 Getting Account Balance
The account’s balance can be checked with the following command:

curl --location --request GET '{{api_url}}/accounts/{{accountId}}/balance' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'id-type: {{idType}}' \
--header 'Content-Type: application/json' \

with variables

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{accountId}}
ID of the account that needs to be checked.
The ID has to be given in the format, that is dictated by the {{idType}}.

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection to the call origin is made.

{{idType}}

Identifier-Type (corresponding to the {{accountId}}).
Available values:

• APPCODE (e.g. A1B2C3D4E5)
• CARDCODE (e.g. V1W2X3Y4Z5)
• EXTERNALCODE (e.g. 123456780123)
• ID (account-identifier, e.g. 7d123457-bfa1-4a83-8213-123456789763)

This will return the value of points available to the account. Loyalty points can be locked,
due to refund periods or individual reasons:

{
 "points": 100,
 "lockedPoints": 0
}

https://staging.convercus.io/
https://api.convercus.io/

User Management Api Implementation Manual

Seite 9

5 Identifiers
An identifier can be used to simplify the access to a customers account to gather loyalty
points. By linking the identifier (that can be a loyalty customer card, online identifier or
others) to a customer's accountId, they can verify at the cash register or online checkout to be
the customer represented by said accountId.
When an identifier is linked to an account, it can be used as additional identification of the
account (can be used as {{accountId}} variable in calls but with different idType).

5.1 Creating Identifiers
A new identifier can be created and mapped to the account.

curl --location --request POST '{{api_url}}/accounts/{{accountId}}/identifiers' \
--header 'interaction-id: {{interactionId}}' \
--header 'Authorization: {{jwt_token}}' \
--header 'Content-Type: application/json' \
--data-raw '{{body}}'

with

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{accountId}} Unique ID assigned to an account at creation.

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection to the call origin is made.

{{body}} Body with Identifier-Information as explained in the following.

The body may look like this:

{
 "code": "ABCD0001",
 "displayCode": "ABCD0001",
 "type": "APPCODE"
}

https://staging.convercus.io/
https://api.convercus.io/

User Management Api Implementation Manual

Seite 10

with

Attribute Description Relevance

code Code that can be used to identify an account Optional

displayCode Display value of the identifier e.g. for printing Optional

type

Declares the type of identifier and has to be one of:

• APPCODE
• CARDCODE
• EXTERNALCODE

Mandatory

5.2 Getting Identifiers
All identifiers assigned to given account can be retrieved simultaniously:

curl --location --request GET '{{api_url}}/accounts/{{accountId}}/identifiers' \
--header 'interaction-id: {{interactionId}}' \
--header 'Authorization: {{jwt_token}}' \
--header 'id-type: {{idType}}' \

with

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{accountId}}
Unique ID assigned to an account at creation.
The ID has to be given in the format, that is dictated by the {{idType}}.

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection to the call origin is made.

https://staging.convercus.io/
https://api.convercus.io/

User Management Api Implementation Manual

Seite 11

{{idType}}

Identifier-Type (corresponding to the {{accountId}}).
Available values:

• APPCODE (e.g. A1B2C3D4E5)
• CARDCODE (e.g. V1W2X3Y4Z5)
• EXTERNALCODE (e.g. 123456780123)
• ID (account-identifier, e.g. 7d123457-bfa1-4a83-8213-123456789763)

This will return all identifiers with their specific identifier type the account is currently
assigned to, e.g.:

[
 {
 "identifierId": "7b7587da-7467-4fe6-96d5-1d650a49f1fc",
 "code": "TESTCODE",
 "displayCode": "AB1299CD",
 "type": "APPCODE",
 "status": "ACTIVE"
 }
]

In order to secure a constistent mapping when displaying the codes, it is hightly
recommened to set up different codes and code types unambigously.

User Management Api Implementation Manual

Seite 12

6 Users
6.1 Creating a new User
A new user can be created with:

curl --location --request POST '{{api_url}}/users' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'Content-Type: application/json' \
--data-raw '{{body}}'

where

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection to the call origin is made.

{{body}} Body with user data parameters, specified in the following.

The body may look like this:

{
 "emailAddress": "test-mail@mail.com",
 "givenName": "testName",
 "familyName": "testFamilyname",
 "streetHouseNo": "testStreet",
 "zipCode": "12345",
 "city": "testCity",
 "countryCode": "DE",
 "genderCode": "FEMALE",
 "birthDate": "1991-01-01",
 "phone": "012345",
 "customProperties": [
 {
 "name": "exampleCustomProperty 1",
 "value": "abcde"
 },
 {

https://staging.convercus.io/
https://api.convercus.io/

User Management Api Implementation Manual

Seite 13

 "name": "exampleCustomProperty 1",
 "value": "10001"
 }
]
}

with (all string-type)

Attribute Description Relevance

emailAddress E-Mail of customer Mandatory

givenName First name of customer Optional

familyName Family name of customer Optional

streetHouseNo Adress of customer Optional

zipCode Zip-Code of customer Optional

city City of residence Optional

countryCode
Country of residence, with code specified in “ISO 3166-1
alpha-2”

Optional

genderCode

Gender, can be one of:

• MALE
• FEMALE
• DIVERSE

Optional

birthDate Date of birth in format YYYY-MM-DD: e.g. "1991-01-01" Optional

phone Phone number of customer Optional

customProperties
array with additional properties in pairs of name: string, value:

string, that have been preconfigured.
Optional

The user will be created in the database and is assigned a userId, which can be obtained from
the response’s header section Location:

Location {{api_url}}/users/userId

User Management Api Implementation Manual

Seite 14

6.2 Displaying User properties
The user’s properties can be retrieved with the unique userId a user is assigned with at
creation. This userId may also be extracted from a membership.

curl --location --request GET '{{api_url}}/users/{{userId}}/' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'Content-Type: application/json' \

with

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{userId}}
The unique identification a user was assigned at creation. Alternatively, this
is taken from a membership-connection.

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection to the call origin is made.

This will retrieve all properties the user has, e.g.

{
 "userId": "dd820ab2-6833-4ee3-9add-7bebf4dadddd",
 "emailAddress": "test-mail@mail.com",
 "givenName": "testName",
 "familyName": "testFamilyname",
 "streetHouseNo": "testStreet",
 "zipCode": "12345",
 "city": "testCity",
 "countryCode": "DE",
 "genderCode": "FEMALE",
 "birthDate": "1991-01-01",
 "phone": "012345",
 "customProperties": [
 {
 "name": "exampleCustomProperty 1",
 "value": "abcde"
 }
]
}

https://staging.convercus.io/
https://api.convercus.io/

User Management Api Implementation Manual

Seite 15

again with

Attribute Description Relevance

emailAddress E-Mail of customer Mandatory

givenName First name of customer Optional

familyName Family name of customer Optional

streetHouseNo Address of customer Optional

zipCode Zip-Code of customer Optional

city City of residence Optional

countryCode
Country of residence, with code specified in “ISO 3166-1
alpha-2”

Optional

genderCode

Gender, can be one of:

• MALE
• FEMALE
• DIVERSE

Optional

birthDate Date of birth in format YYYY-MM-DD: e.g. "1991-01-01" Optional

phone Phone number of customer Optional

customProperties
array with additional properties in pairs of name: string, value:

string, that have been preconfigured.
Optional

Note, that the content of this response may differ with the program. There may be multiple
customProperties, which are completely program-specific. Furthermore, it is possible that in
future versions, the response will be expanded by more fields, so you should make sure to
be able to accept more output.

6.3 Updating User Information
Using a users unique userId, a user can be updated in two variants:

6.3.1 OVERWRITE ALL USER DATA (PUT)
A PUT request will update the user data given in the argument, deleting all pre-existing
properties that were not specified in the request.

curl --location --request PUT '{{api_url}}/users/{{userId}}' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'Content-Type: application/json' \
--data-raw '{{body}}'

User Management Api Implementation Manual

Seite 16

with

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{userId}} The unique identification a user was assigned at creation.

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection to the call origin is made.

{{body}} Body with user data parameters, specified in the following.

The body may look like this:

{
 "emailAddress": "test2-mail@mail.com",
 "givenName": "testName",
 "familyName": "testFamilyname",
 "streetHouseNo": "testStreet",
 "zipCode": "22222",
 "city": "testCity",
 "countryCode": "DE",
 "genderCode": "FEMALE",
 "birthDate": "1991-01-01",
 "phone": "999999999",
 "customProperties": [
 {
 "name": "exampleCustomProperty 1",
 "value": "abcde"
 }
]
}

with

Attribute Description Relevance

emailAddress E-Mail of customer Mandatory

givenName First name of customer Optional

familyName Family name of customer Optional

https://staging.convercus.io/
https://api.convercus.io/

User Management Api Implementation Manual

Seite 17

streetHouseNo Address of customer Optional

zipCode Zip-Code of customer Optional

city City of residence Optional

countryCode
Country of residence, with code specified in “ISO 3166-1
alpha-2”

Optional

genderCode

Gender, can be one of:

• MALE
• FEMALE
• DIVERSE

Optional

birthDate Date of birth in format YYYY-MM-DD: e.g. "1991-01-01" Optional

phone Phone number of customer Optional

customProperties
array with additional properties in pairs of name: string, value:

string, that have been preconfigured.
Optional

As mentioned before, this will delete all properties, that are not specified in the request.

6.3.2 OVERWRITE SELECTED USER DATA (PATCH)
Contrary, a PATCH request will change all properties given in the argument, while leaving all
arguments not specified in the request unmodified.

curl --location --request PATCH '{{api_url}}/users/{{userId}}' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'Content-Type: application/json' \
--data-raw '{{body}}'

with

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{userId}} The unique identification a user was assigned at creation.

{{jwt_token}} The JWT-token, which has been generated by authentication.

https://staging.convercus.io/
https://api.convercus.io/

User Management Api Implementation Manual

Seite 18

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection to the call origin is made.

{{body}} Body with user data parameters, specified in the following.

The body with parameters may look like this:

{
 "zipCode": 22222
}

with the same possible parameters as the PUT request:

Attribute Description Relevance

emailAddress E-Mail of customer Optional

givenName First name of customer Optional

familyName Family name of customer Optional

streetHouseNo Address of customer Optional

zipCode Zip-Code of customer Optional

city City of residence Optional

countryCode
Country of residence, with code specified in “ISO 3166-1
alpha-2”

Optional

genderCode

Gender, can be one of:

• MALE
• FEMALE
• DIVERSE

Optional

birthDate Date of birth in format YYYY-MM-DD: e.g. "1991-01-01" Optional

phone Phone number of customer Optional

customProperties

array with additional properties in pairs of name: string, value:

string, that have been preconfigured.
Note: customProperties always requires all properties, even if
only one or a few need to be changed. All properties that are
not specified, even if they remain unchanged, will be deleted.

Optional

The examplary request will update the specified properties in the data-raw argument, in this
case the zipCode.
Individual properties can be deleted by updating them with null, e.g.:

User Management Api Implementation Manual

Seite 19

curl --location --request PATCH '{{api_url}}/users/{{userId}}' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'Content-Type: application/json' \
--data-raw '{
 "zipCode": null
}'

Note: When updating the custom properties array, each entry has to be sent with the request,
as both PUT and PATCH can only update the array in its entirety.

6.4 Deleting Users
A user can be deleted from the database, by sending a DELETE request with the unique
userId.

curl --location --request DELETE '{{api_url}}/users/{{userId}}' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'Content-Type: application/json' \

again with

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{userId}} The unique identification a user was assigned at creation.

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection to the call origin is made.

This will delete the user and anonymize the user data while simultaniously resetting the
loyalty points to 0.

https://staging.convercus.io/
https://api.convercus.io/

User Management Api Implementation Manual

Seite 20

7 Memberships
A user, which is a customer profile with customer-specific data, is not able to collect loyalty
points by itself, since the loyalty system collects points on accounts only. A membership can
link a customer profile to an account, enabling the user to collect points for his connected
accountId. One account may have N user connected with N memberships (always connect 1
user per membership). In practise, the most common situation is the connection 1 account :
1 membership : 1 user on which we will mainly focus in the following.
Note that the membership is the object which contains optin-information as optins are
typically set / activated when a registration is completed (= user connected with account).

7.1 Creating Memberships
A new membership for given accountId can be created to connect a user with an account.

curl --location --request POST '{{api_url}}/accounts/{{accountId}}/memberships' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'Content-Type: application/json' \
--data-raw '{{body}}'

with variables

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{accountId}} ID of the account that will get the membership connection.

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection to the call origin is made.

{{body}} Body with membership data parameters, specified in the following.

https://staging.convercus.io/
https://api.convercus.io/

User Management Api Implementation Manual

Seite 21

The body may look like this:

{
 "accountId": "ff2bd33f-3878-4cfc-9ecc-1a541972e498",
 "memberRole": "OWNER",
 "optins": [
 {
 "flag": true,
 "type": "Post"
 },
 {
 "flag": true,
 "type": "Newsletter"
 }
],
 "partnerId": "550e8400-e29b-11d4-a716-446655440000",
 "userId": "d22917e4-e764-4f12-8969-b834673f3acd"
}

with

Attribute Description Relevance

accountId ID of the account that will receive the transaction. Mandatory

memberRole

Indicates the relation the user has to the account. Must
be one of:

• OWNER
• COOWNER
• COLLECTOR

Note that the first membership has to have the OWNER-
role. There can be only one OWNER per membership. If
not explicitly required otherwise, only one user should
be connected via one membership to one account.

Mandatory

optins
array with pairs of flag: boolean, type: string with set optins
(type) and there value (flag).

Optional

partnerId
Declares the Id for the loyalty partner the membership
should be linked to. This can be used to grant bonuses,
like welcome-bonus or seasonal bonuses.

Optional /
Mandatory for
multipartner
programs

The response will be similar to previous Creation-Requests, where the crucial information
can be obtained from the Location row of the response header array.
The composition is:

Location {{api_url}}/accounts/{{accountId}}/memberships/{{membershipId}}

User Management Api Implementation Manual

Seite 22

Where {{accountId}} and {{membershipId}} are the values of given account and account-
membership, respectively.

7.2 Getting Memberships of an Account
All memerships (and optins) of given account can be retrieved with the account
identification:

curl --location --request GET '{{api_url}}/accounts/{{accountId}}/memberships' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'id-type: {{idType}}' \
--header 'Content-Type: application/json' \

with variables

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{accountId}}
ID of the account that should be checked..
The ID has to be given in the format, that is dictated by the{{idType}},

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection to the call origin is made.

{{idType}}

Identifier-Type (corresponding to the {{accountId}}).
Available values:

• APPCODE (e.g. A1B2C3D4E5)
• CARDCODE (e.g. V1W2X3Y4Z5)
• EXTERNALCODE (e.g. 123456780123)
• ID (account-identifier, e.g. 7d123457-bfa1-4a83-8213-123456789763)

Note again, that you can use the identifier code directly (e.g. {{idType}}=CARDCODE,
{{accountId}}=V1W2X3Y4Z5) at this point.

https://staging.convercus.io/
https://api.convercus.io/

User Management Api Implementation Manual

Seite 23

The returned object looks like this:

[
 {
 "accountId": "550e8400-e29b-11d4-a716-446655440000",
 "memberRole": "OWNER",
 "membershipId": "550e8400-e29b-11d4-a716-446655440000",
 "optins": [
 {
 "flag": true,
 "type": "email"
 }
],
 "partnerId": "550e8400-e29b-11d4-a716-446655440000",
 "userId": "550e8400-e29b-11d4-a716-446655440000"
 }
]

where

Attribute Description

accountId Technical account-Id connected to this membership.

memberRole

Role of the membership. In general, it is possible to have multiple
memberships, one account owner ("memberRole": "OWNER") and several
COOWNERs or COLLECTORs.
In the standard setup however, there is only one membership (with
"memberRole": "OWNER"), connecting one account to one user.

membershipId Technical ID of the membership.

optins
List of optins that this membership has. Optin names are denoted by type,
optin values are denoted by flag.

partnerId Technical ID of the partner, the membership is belonging to.

userId Technical ID of the user connected to an account via the membership.

If no membership is returned, the returned array is empty []. Depending on the specific
program setup, these users may not be allowed to do anything if there are not registered.
This logic has to be adopted here if that’s the case.

User Management Api Implementation Manual

Seite 24

7.3 Getting a specific Membership of an
Account

To investigate a specific membership of given accountId closer, all enlisted information can be
obtained at once by using:

curl --location --request GET '{{api_url}}/accounts/{{accountId}}/memberships/{{membershipId}}' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'id-type: {{idType}}' \
--header 'Content-Type: application/json' \

with

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{accountId}}
ID of the account that should be checked..
The ID has to be given in the format, that is dictated by the{{idType}},

{{membershipId}} Unique ID of the membership.

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection to the call origin is made.

{{idType}}

Identifier-Type (corresponding to the {{accountId}}).
Available values:

• APPCODE (e.g. A1B2C3D4E5)
• CARDCODE (e.g. V1W2X3Y4Z5)
• EXTERNALCODE (e.g. 123456780123)
• ID (account-identifier, e.g. 7d123457-bfa1-4a83-8213-123456789763)

https://staging.convercus.io/
https://api.convercus.io/

User Management Api Implementation Manual

Seite 25

The response object looks like this:

{
 "membershipId": "4670c014-45b4-4d3b-bafd-b4bd13b5d659",
 "accountId": "fd313081-11ae-4e50-b429-5c1cc0bfb357",
 "userId": "24632823-71ca-47d3-8e20-6f9c7d727ef5",
 "memberRole": "OWNER",
 "partnerId": null,
 "terminated": null,
 "createdAt": null,
 "optins": [
 {
 "flag": true,
 "type": "email"
 }
]
}

where

Attribute Description

membershipId Technical ID of the membership.

accountId Technical account-Id connected to this membership.

userId Technical ID of the user connected to an account via the membership.

memberRole

Role of the membership. In general, it is possible to have multiple
memberships, one account owner ("memberRole": "OWNER") and several
COOWNERs or COLLECTORs.
In the standard setup however, there is only one membership (with
"memberRole": "OWNER"), connecting one account to one user.

partnerId Technical ID of the partner, the membership is belonging to.

optins
List of optins that this membership has. Optin names are denoted by type,
optin values are denoted by flag.

User Management Api Implementation Manual

Seite 26

7.4 Update Membership Optins
The optins for a specific membership of given accountId can be updated by reassining them in
the following request:

curl --location --request PATCH '{{api_url}}/accounts/{{accountId}}/memberships/{{membershipId}}' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'id-type: {{idType}}' \
--header 'Content-Type: application/json' \
--data-raw '{{body}}'

with

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{accountId}}
ID of the account that should be checked..
The ID has to be given in the format, that is dictated by the{{idType}},

{{membershipId}} Unique ID of the membership.

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection to the call origin is made.

{{idType}}

Identifier-Type (corresponding to the {{accountId}}).
Available values:

• APPCODE (e.g. A1B2C3D4E5)
• CARDCODE (e.g. V1W2X3Y4Z5)
• EXTERNALCODE (e.g. 123456780123)
• ID (account-identifier, e.g. 7d123457-bfa1-4a83-8213-123456789763)

{{body}} Body with Identifier-Information as explained in the following.

https://staging.convercus.io/
https://api.convercus.io/

User Management Api Implementation Manual

Seite 27

The body may look like this:

[
 {
 "flag": true,
 "type": "email"
 }
]

where each updated optin must be paired with a true-false-flag.
Note: body musst contain all optins, even if they remain unchanged. Any optin not specified
in body will be deleted.

