

Transaction Api
Implementation Manual
v1.3.0

Transaction Api Implementation Manual

Seite 2

Table of Content

1 TRANSACTION API IMPLEMENTATION MANUAL ... 3

2 CHANGE LOG ... 3

3 AUTHENTICATION ... 4

4 USER / ACCOUNT IDENTIFICATION ... 5

4.1 Card identification ... 5

4.2 User Search .. 5

4.3 Getting Account Details ... 7
4.3.1 Getting basic Account Information .. 8
4.3.2 Getting Membership Details ... 9
4.3.3 Getting User Details ... 11

5 GENERAL QUESTIONS .. 12

5.1 Which Bons should be sent? .. 12

6 BASIC CALL SETUP: TRANSACTION VS ACCOUNT-TRANSACTION 12

6.1 Transaction .. 12

6.2 Account-Transaction .. 13

7 TRANSACTION REQUEST BODY (EARN) ... 14

7.1 Minimal Transaction Body (Mandatory Fields) ... 14

7.2 Maximal Transaction Body (Optional Fields) .. 14
7.2.1 lineItems Attribute .. 16
7.2.2 tenderItems Attribute ... 20
7.2.3 linkedTransaction .. 22
7.2.4 Maximal Example JSON ... 23

8 BURN INTERFACE (PAYWITHPOINTS) .. 24

8.1 Getting current Account Balance .. 24

8.2 PayWithPoints-Transaction .. 25
8.2.1 PAYWITHPOINTSTRANSACTION-Body ... 26

8.3 Connection between EARN and BURN transactions .. 29

Transaction Api Implementation Manual

Seite 3

1 Transaction Api Implementation
Manual

This manual describes how to implement an interface for sending digital receipts to
Convercus. With this documentation, it should be more intuitive and straight-forward to
map all relevant information of a digital receipt to Convercus standard transaction format.
Technical information about the Convercus Api can be found at the following sites

• https://staging.convercus.io/api-docs/swagger-ui.html (Staging Environment)
• https://api.convercus.io/api-docs/swagger-ui.html (Production Environment)

and on the Developer Page

• https://developer.convercus.io/

2 Change Log
Version Change Date Change Log

v1.3.0 2020-11-24
• Adding Domain Search to description
• Minor corrections

v1.2.0 2020-08-21
• Adding User / Account Identification to documentation
• Minor corrections

v1.1.0 2020-05-08
• Adding BURN (PayWithPoints) to documentation
• Minor corrections

v1.0.0 2020-04-30 • Initial document

Transaction Api Implementation Manual

Seite 4

3 Authentication
Every request requires a JWT-Token for authentication. The token can be obtained with the
following request:
curl --location --request POST '{{api_url}}/auth/login' \
--header 'Content-Type: application/json' \
--data-raw '{
 "org": "{{org}}",
 "userName": "{{userName}}",
 "password": "{{password}}"
}'
where the following variables have been used:

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{org}} Organization code for correct mapping.
This value will be given by Convercus.

{{userName}} User-Name of the api-user.
This value will be given by Convercus.

{{password}} User-Password of the api-user.
This value will be given by Convercus.

The JWT-Token can be found in the body of the response.
Note, that the token expires after 24 hours. To have a valid token at all times, it is
necessary to generate the token on a regular basis.

Transaction Api Implementation Manual

Seite 5

4 User / Account Identification
For all loyalty-related processes it is important to identify the person the system is
interacting with. The central object for this identification is the account you can collect
points on. This account can be linked to user-data, transactions, bookings, etc. Every account
has an unique identifier, the account_id (e.g. 7d123457-bfa1-4a83-8213-123456789763), which is the
technical ID all those connections are made with.
Additionally, every account can have multiple identifiers (i.e. card-codes, external
identification-codes, etc.), which allow to make a connection to an account without the need
to extract the account-id. We will explore both identifier-related api-calls and account-id-
related api-calls in this chapter and analogously in the chapters about earn- and burn-
transactions.

4.1 Card identification
All connections of transactions, bookings, etc. to accounts can be performed using the
account_id (or alternatively the identifier codes). Thus, there has to be a mechanism to
identify the account you want to connect to.
This is usually done, by scanning / typing / etc. the predefined identifier code (card number)
of the customer. This card code can then be used in the api analogously to the account-id
(see in the respective chapters for examples).
Note, that for this process, it is not necessary to get any user-information. It is possible to
perform the whole purchase and payment process without requesting additional user-
information (like name, birthdate, optins, etc.) as only the account-identification
(account_id or identifier-code) is important for the relevant api processes. If there is no
need to view user-data on the cash register, you can simplify and speed up the whole
process by skipping it altogether.

4.2 User Search
If a registered customer forgot to bring his card, there is the option to search for him via
search api. This api is performing an elastic search over various domain objects (including
accounts) and responds an array with results. You can perform an elastic search in the
following way

curl --location --request POST '{{api_url}}/search' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'Content-Type: application/json' \
--data-raw '{{body}}'

Transaction Api Implementation Manual

Seite 6

with variables

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{jwt_token}} JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection bon-to-store is made.

{{body}} Body with search parameters, specified in the following.

The body with search parameters looks like this:
{
 "searchTerm": "Example",
 "type": "ACCOUNT"
}
with

Attribute Description Relevance

searchTerm

Text to be matched with indexed search fields.
Multiple values can be separated by spaces (e.g.
FirstName LastName).
The following fields are indexed

• account.identifier
• user.givenName
• user.familyName
• user.city
• user.zipCode
• user.emailAddress
• user.birthdate (YYYY-MM-DD), not

compatible with multiple search values

Mandatory

type Domain filtering.
Optional
Filtering to ACCOUNT is
strongly recommended.

In general, this api may search over various domains, giving results like this
{
 "searchTerm": "Example",
 "nrOfResults": 3,
 "results": {
 "COUPON": [

Transaction Api Implementation Manual

Seite 7

 {
 "preview": "Title: Title of Coupon,Type: REWARD",
 "refId": "a1e52b7a-5cd4-4580-a0f7-7f602b27ba6e",
 "type": "COUPON"
 },
 {
 "preview": "Title: Title of Coupon,Type: DISCOUNT",
 "refId": "abad53e5-bd86-48df-858c-1bcce3af41fb",
 "type": "COUPON"
 }
],
 "ACCOUNT": [
 {
 "preview": "name: Name of Person,email: E-Mail of Person",
 "refId": "2f081e91-1346-4ef6-82b2-fcdecd3c190b",
 "type": "ACCOUNT"
 }
]
 }
}
Important Note about Filtering to Domains:
Usually, the ACCOUNT domain search is the weapon of choice here (as we are normally not
interested in information about backend settings here). Applying the filtering on ACCOUNT
responds the following result (same setup as before, but filtered):
{
 "searchTerm": "Example",
 "nrOfResults": 1,
 "results": {
 "ACCOUNT": [
 {
 "preview": "name: Name of Person,email: E-Mail of Person",
 "refId": "2f081e91-1346-4ef6-82b2-fcdecd3c190b",
 "type": "ACCOUNT"
 }
]
 }
}
After identifying the user, the refId of the correct ACCOUNT-result can be used as accountId for
all further processes.

4.3 Getting Account Details
If you are interested in more detail about the person standing at the POS, you can use an
identifier code or accountid to get more information about the account like its bookings,
transactions, current balance, membership information or user-data. All those options are
explained in Swagger Documentation (spec: account). We will focus here on personal user-
data.
Note, that due to structure of the platform, there are essentially three objects which contain
information about the user, his account and membership.

Transaction Api Implementation Manual

Seite 8

• account:
o This is the central element of the loyalty system.
o Every account has its unique accountId. All relevant loyalty-processes can be

linked to this id.
o N identifiers of different id-type may serve as additional external identifiers for

an account. Usually, these identifiers are Cardcodes or external numbers (like
a online-shop-id).

o Accounts can be anonymous, if they don’t have user-information connected
(see membership).

• user:
o This is the object which contains personal user-data like name, address, etc.
o User data may be created independently from an account. Without the

connection to an account (see membership) however, there is no way to
interact with this data in a loyalty context (e.g. you cannot earn points on a
user, but an account.

• membership:
o This object connects an account to a user object.
o The creation of a membership is typically the result of a completed

registration.
o Optins for the program are related to this object.

Depending on the set of information you are interested in, you may need to get all of them.
We will explain a straight-forward way to do this in the following.

4.3.1 GETTING BASIC ACCOUNT INFORMATION
As stated out before, the account is the center of the whole loyalty system. The accountId can
be used as common connection id for practically all loyalty connections.
You can get the basic account information with the following request:
curl --location --request GET '{{api_url}}/accounts/{{accountId}}' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'Content-Type: application/json' \
--header 'id-type: {{idType}}' \
with variables

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{accountId}} ID of the account that will receive the transaction.
The ID has to be given in the format, that is dictated by the{{idType}},

{{jwt_token}} The JWT-token, which has been generated by authentication.

Transaction Api Implementation Manual

Seite 9

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection bon-to-store is made.

{{idType}}

Identifier-Type (corresponding to the {{accountId}}).
Available values:

• APPCODE (e.g. A1B2C3D4E5)
• CARDCODE (e.g. V1W2X3Y4Z5)
• EXTERNALCODE (e.g. 123456780123)
• ID (account-identifier, e.g. 7d123457-bfa1-4a83-8213-123456789763)

Note, that it’s possible to get the account-object using the identifier code (e.g.
{{idType}}=CARDCODE, {{accountId}}=V1W2X3Y4Z5) or the accountId itself (e.g. {{idType}}=ID,
{{accountId}}=7d123457-bfa1-4a83-8213-123456789763). Thus, the request may also be used to
extract an accountId from a given Identifier.
The account-object per se is rather slender, only containing an id (accountId), a program
reference and a status of the account.
{
 "id": "550e8400-e29b-11d4-a716-446655440000",
 "program": "Pgr-A",
 "status": "ACTIVE"
}
If your program allows deactivation or locking of accounts, you should make sure, that
accounts that don’t have the status ACTIVE cannot proceed with the following earn- and
burn-processes. Deleted Accounts will not be responded at all.

4.3.2 GETTING MEMBERSHIP DETAILS
If you are interested in optins and / or user data of a given account, you need to check if the
account has an active membership by requesting
curl --location --request GET '{{api_url}}/accounts/{{accountId}}/memberships' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'Content-Type: application/json' \
--header 'id-type: {{idType}}' \
with variables

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{accountId}} ID of the account that will receive the transaction.
The ID has to be given in the format, that is dictated by the{{idType}},

Transaction Api Implementation Manual

Seite 10

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection bon-to-store is made.

{{idType}}

Identifier-Type (corresponding to the {{accountId}}).
Available values:

• APPCODE (e.g. A1B2C3D4E5)
• CARDCODE (e.g. V1W2X3Y4Z5)
• EXTERNALCODE (e.g. 123456780123)
• ID (account-identifier, e.g. 7d123457-bfa1-4a83-8213-123456789763)

Note again, that you can use the identifier code directly (e.g. {{idType}}=CARDCODE,
{{accountId}}=V1W2X3Y4Z5) at this point.
The returned object looks like this:
[
 {
 "accountId": "550e8400-e29b-11d4-a716-446655440000",
 "memberRole": "OWNER",
 "membershipId": "550e8400-e29b-11d4-a716-446655440000",
 "optins": [
 {
 "flag": true,
 "type": "email"
 }
],
 "partnerId": "550e8400-e29b-11d4-a716-446655440000",
 "userId": "550e8400-e29b-11d4-a716-446655440000"
 }
]
where

Attribute Description

accountId Technical account-Id connected to this membership.

memberRole

Role of the membership. In general, it is possible to have multiple
memberships, one account owner ("memberRole": "OWNER") and several
COOWNERs or COLLECTORs.
In the standard setup however, there is only one membership (with
"memberRole": "OWNER"), connecting one account to one user.

membershipId Technical ID of the membership.

optins List of optins that this membership has. Optin names are denoted by type,
optin values are denoted by flag.

partnerId Technical ID of the partner, the membership is belonging to.

Transaction Api Implementation Manual

Seite 11

userId Technical ID of the user connected to an account via the membership.

If no membership is returned, the returned array is empty []. Depending on the specific
program setup, these users may not be allowed to earn and/or burn their points if there are
not registered. This logic has to be adopted here if that’s the case.

4.3.3 GETTING USER DETAILS
Given the userId of the membership, user data can be received by requesting:
curl --location --request GET '{{api_url}}/users/{{userId}}' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'Content-Type: application/json' \
with

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{userId}} Technical User-ID of the user (usually given by the membership connection).

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection bon-to-store is made.

An exemplary response looks like this
{
 "birthDate": "1965-03-05",
 "city": "München",
 "countryCode": "DE",
 "customProperties": [
 {
 "name": "string",
 "value": "string"
 }
],
 "emailAddress": "member1@convercus.de",
 "familyName": "Mustermann",
 "genderCode": "MALE",
 "givenName": "Max",
 "phone": 654324563,
 "streetHouseNo": "Bahnhofstraße 1",
 "userId": "550e8400-e29b-11d4-a716-446655440000",
 "zipCode": 80469
}
Note, that the content of this response may differ with the program. There may be multiple
customProperties, which are completely program-specific. Furthermore, it is possible that in

Transaction Api Implementation Manual

Seite 12

future versions, the response will be expanded by more fields, so you should make sure to
be able to accept more output.

5 General Questions
5.1 Which Bons should be sent?
If not communicated otherwise, all completed bons (with and without loyalty connection)
should be sent to Convercus Interface. It is crucial to secure, that every purchase is only
incentivated once.
Thus, processes like partial payments and commisions (which may produce a bon itself)
should not be sent to Convercus. The bon (with all line-items) should be sent and
incentivated only after (and only if) it has been paid completely.
It is not necessary to exclude certain line-items, as exclusion from incentivation on the level
of purchases can be configured in Convercus system (given a constistent set of identifiers for
the line-items). Always give all the line-items, which are printed on the bon itself.

6 Basic Call Setup: Transaction vs
Account-Transaction

Digital receipts sent to Convercus may (or may not) have a Loyalty-Connection. Thus,
Convercus Api differentiates between Transactions (no Loyalty-connection; Bon is only
stored in database for later purposes) and Account-Transactions (Loyalty-connection). While
for the same purchase, the body of both transaction-types will stay the same (as will be the
subject of the next chapter), the headers and endpoints deviate from each other, as we will
see in the next two subchapters.

6.1 Transaction
Transactions without Loyalty-connect can be sent with the following request
curl --location --request POST '{{api_url}}/transactions' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'Content-Type: application/json' \
--data-raw '{{body}}'
with the following variables:

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

Transaction Api Implementation Manual

Seite 13

{{jwt_token}} JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection bon-to-store is made.

{{body}} Body with Bon-Information as explained in the next chapter.

6.2 Account-Transaction
If a transaction has to be connected to a loyalty-account, the following request should be
sent:
curl --location --request POST '{{api_url}}/accounts/{{accountId}}/transactions' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'id-type: {{idType}}' \
--header 'Content-Type: application/json' \o
--data-raw '{{body}}'
Note the different endpoint (accounts instead of transactions) and the position of the Loyalty-
information {{identifierCode}} and {{idType}}.
The used variables are the following:

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{accountId}} ID of the account that will receive the transaction.
The ID has to be given in the format, that is dictated by the{{idType}},

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection bon-to-store is made.

Transaction Api Implementation Manual

Seite 14

{{idType}}

Identifier-Type (corresponding to the {{accountId}}).
Available values:

• APPCODE (e.g. A1B2C3D4E5)
• CARDCODE (e.g. V1W2X3Y4Z5)
• EXTERNALCODE (e.g. 123456780123)
• ID (account-identifier, e.g. 7d123457-bfa1-4a83-8213-123456789763)

{{body}} Body with Bon-Information as explained in the next chapter.

7 Transaction Request Body (Earn)
In this chapter, we will explain how to fill the {{body}} of transaction requests.

7.1 Minimal Transaction Body (Mandatory
Fields)

The minimal set of receipt information (containing only mandatory fields) is the following:
{
 "transactionType": "EARNTRANSACTION",
 "amount": 99.90
}
with mandatory attributes

Attribute Description

transactionType Type of the transaction. For digital receipt, always use the value
EARNTRANSACTION

amount Total amount of the bon.

7.2 Maximal Transaction Body (Optional Fields)
The minimal setup is only providing the minimal functionality (i.e. store purchase-totals and
connect them with loyalty-accounts). In order to benefit from a range of modules in the
Convercus system, it may be necessary to add optional attributes.
The following example will give a maximal set of receipt information. The relevant fields for
your implementation depend on the system and program setup and need to be coordinated
with the program manager.
{
 "transactionType": "EARNTRANSACTION",
 "transactionTime": "2020-04-30T10:50:00+02:00",
 "valueTime": "2020-04-30T10:50:00+02:00",
 "externalId": "UniqueBonID",

Transaction Api Implementation Manual

Seite 15

 "amount": 99.90,
 "currencyCode": "EUR",
 "lineItems": [...],
 "tenderItems": [...],
 "linkedTransaction": {...}
}
The following attributes may be used (if not stated otherwise, every attribute may only be
used once):

Attribute Description Relevance

transactionType Type of the transaction. For digital receipt, also use the value
EARNTRANSACTION Mandatory

transactionTime

ISO 8601 datetime, when the transaction was created (i.e.
datetime of the receipt).
Either give the datetime in UTC (eg. 2020-04-08T10:50:00Z or in
local-time with timezone (e.g. 2020-04-08T10:50:00+02:00 for CET
with daylight-saving-time or 2020-01-08T10:50:00+01:00CET).

Optional

valueTime

ISO 8601 value datetime of the transaction (i.e. the datetime,
when the booked transaction-points become active).
Note:
If this field is missing, the valueTime will be set to the time,
when the transaction is processed in Convercus system.
Do not fill this field unless you don’t want to have this
standard-situation.

Optional

externalId

Unique (over the program) Bon-ID. As a security measure
(don’t incentivate the same bon twice), reoccuring bons with
the same externalID are rejected by the system, so make sure
that every bon-id is unique.

Optional

amount

Total amount of the bon.
Important:
This amount should always be the same as the sum of all
purchases and returns of the bon. Convercus-system rejects
bons, where the amount is less the sum of lineItems. Any
deviation should be checked before sending the bon as there
may be an error in the bon-structure (e.g. missing positions).

Mandatory

currencyCode Currency Code (e.g. EUR) of the total amount. Optional

lineItems
List of purchased line items of the bon.
This attribute will be explained in more Detail in the
respective subchapter.

Optional

tenderItems
List of payment items of the bon.
This attribute will be explained in more Detail in the
respective subchapter.

Optional

Transaction Api Implementation Manual

Seite 16

linkedTransaction
Link to an existing transaction.
This attribute will be explained in more Detail in the
respective subchapter.

Optional

7.2.1 LINEITEMS ATTRIBUTE

7.2.1.1 Minimal lineItem
Every line-item (both purchases and returns) of the bon should be mapped to an item in the
lineItems-list.
The minimal required set of information for a line-item is the following:
 "lineItems": [
 {
 "sequenceNumber": 1,
 "type": "SALE",
 "itemID": "2758221",
 "extendedAmount": 199.80
 },
 ...
]
with mandatory attributes:

Attribute Description

sequenceNumber Sequence number of the line-item. This value is incremented with every
line-item, starting at 1.

type
Type of the transaction.
The values SALE and RETURN are used to differentiate the processes of
purchase and cancellation / return.

itemID

This is the unique identifier of the product. Usually this is the article code
in an external system (e.g. barcode).
Note about Incentivation:
On the level of this ID, it is possible to define incentivation rules (i.e.
exclusion or multiple points).
Thus, the set of IDs for this should be consistent over the whole program.

extendedAmount

This is the actual amount, this item was sold for. Accordingly, this value
has to incorporate all given discounts.
Note:
Depending on the type of line-item, one has to keep track of the signs of
this amount: SALE-transactions have positive signs, RETURN-transactions
have negative signs.

Like before, the minimal setup is only providing the minimal functionality, which may be
extended by adding optional attributes. For example, in order to be able to make special
incentivation for certain line-items (e.g. exclusion from incentivation, extra-points), it’s
important to provide a detailed and consistent set of information about the product itself.
In the following we will show maximal sets of information, also stressing the difference
between SALE- and RETURN-transactions a little more.

Transaction Api Implementation Manual

Seite 17

7.2.1.2 Maximal SALE-lineItem
The SALE is most common and most important line-item-type as this is classic purchase line-
item. Every purchase, which is printed on the bon should also be added to the lineItem-list.
Note, that Discounts should not produce a line-item for themselves. It is possible to track
original pricing in the lineItem-element itself.
The following example will give a maximal set of SALE-line-item-information. The relevant
fields for your implementation depend on the system and program setup and need to be
coordinated with the program manager.

 "lineItems": [
 {
 "sequenceNumber": 1,
 "type": "SALE",
 "itemID": "2758221",
 "merchandiseGroupCode": "1201",
 "merchandiseGroupName": "Shoes",
 "merchandiseSubGroupCode": "120103",
 "merchandiseSubGroupName": "Sneakers",
 "description": "Test-Shoe",
 "actualSalesUnitPrice": 99.90,
 "quantity": 2,
 "extendedAmount": 199.80,
 "currencyCode": "EUR",
 "taxRate": 19.00
 }
]
T
he following attributes may be used (if not stated otherwise, every attribute may only be
used once):

Attribute Description Relevance

sequenceNumber Sequence number of the line-item. This value is
incremented with every line-item, starting at 1. Mandatory

type Type of the transaction.
For purchases, the value is SALE. Mandatory

itemID

This is the unique identifier of the product. Usually
this is the article code in an external system (e.g.
barcode).
Note about Incentivation:
On the level of this ID, it is possible to define
incentivation rules (i.e. exclusion or multiple points).
Thus, the set of IDs for this should be consistent
over the whole program.

Mandatory

Transaction Api Implementation Manual

Seite 18

merchandiseGroupCode

This is the unique identifier of the product's
merchandise group.
Note about Incentivation:
On the level of the ID, it is possible to define
incentivation rules (i.e. exclusion or multiple points).
Thus, the set of IDs for this should be consistent
over the whole program.

Optional

merchandiseGroupName This is the name of the product’s merchandise
group. Optional

merchandiseSubGroupCode

This is the unique identifier of the product's
merchandise subgroup.
Note about Incentivation:
On the level of the ID, it is possible to define
incentivation rules (i.e. exclusion or multiple points).
Thus, the set of IDs for this should be consistent
over the whole program.

Optional

merchandiseSubGroupName This is the name of the product’s merchandise
subgroup. Optional

description This is the name or description of the product. Optional

actualSalesUnitPrice

This is the amount, a single item was sold for. So
this value is equal to the regular unit price - all
discounts on the level of this product.
Note:
For SALE-transaction, this value is always positive.

Optional

quantity This is the number of units, that were sold in this
line-item. Optional

extendedAmount

This is the actual amount, this item was sold for.
Accordingly, this value has to incorporate all given
discounts.
Note:
For SALE-transaction, this value is always positive.

Mandatory

currencyCode Currency Code (e.g. EUR) of the extendedAmount. Optional

taxRate Percentage of tax applied for this line-item. Optional

7.2.1.3 Maximal Return-lineItem
As it is also pretty common to have negative bookings in a bon, as products may be returned
or cancelled altogether. Such line-items may be added as a RETURN-line-item. However, there
are a few things, to be minded.
Note about the difference between Cancellation and Returns:
The Convercus system does not differentiate between cancellation and return as both do

Transaction Api Implementation Manual

Seite 19

basically the same: They refer to a previous, positive purchase / booking and negate it by
adding a negativ purchase / booking.
Thus, all negative bookings (i.e. returns and cancellations) shall be mapped to a RETURN-line-
item.
Note about the setup of Return line-items
RETURN-line-items have to have the exact same setup as the corresponding SALE-Line-item
had. This secures the same treatment of the return while processing in order to rebook
points. Therefore, especially all discounts given to the initial booking have to be added to the
RETURN-item as well (so that the price is correct). Furthermore, the same product
information has to be given (so that incentivation exclusion and extra-points are handled
correctly).
Note however, that RETURN-line-amounts have to have negative signs.
The following example will give a maximal set of RETURN-line-item-information. The relevant
fields for your implementation depend on the system and program setup and need to be
coordinated with the program manager.
 "lineItems": [
 {
 "sequenceNumber": 1,
 "type": "RETURN",
 "itemID": "2758221",
 "merchandiseGroupCode": "1201",
 "merchandiseGroupName": "Shoes",
 "merchandiseSubGroupCode": "120103",
 "merchandiseSubGroupName": "Sneakers",
 "description": "Test-Shoe",
 "currencyCode": "EUR",
 "actualSalesUnitPrice": -99.90,
 "quantity": 1,
 "extendedAmount": -99.90,
 "taxRate": 19.00
 }
]
The following attributes may be used (if not stated otherwise, every attribute may only be
used once):

Attribute Description Relevance

sequenceNumber Sequence number of the line-item. This value is
incremented with every line-item, starting at 1. Mandatory

type Type of the transaction.
For cancellations and returns, the value is RETURN. Mandatory

itemID

This is the unique identifier of the product. Usually this
is the article code in an external system (e.g. barcode).
Note about Incentivation:
On the level of this ID, it is possible to define
incentivation rules (i.e. exclusion or multiple points).
Thus, the set of IDs for this should be consistent over
the whole program.

Mandatory

Transaction Api Implementation Manual

Seite 20

merchandiseGroupCode

This is the unique identifier of the product's
merchandise group.
Note about Incentivation:
On the level of the ID, it is possible to define
incentivation rules (i.e. exclusion or multiple points).
Thus, the set of IDs for this should be consistent over
the whole program.

Optional

merchandiseGroupName This is the name of the product’s merchandise group. Optional

merchandiseSubGroupCode

This is the unique identifier of the product's
merchandise subgroup.
Note about Incentivation:
On the level of the ID, it is possible to define
incentivation rules (i.e. exclusion or multiple points).
Thus, the set of IDs for this should be consistent over
the whole program.

Optional

merchandiseSubGroupName This is the name of the product’s merchandise
subgroup. Optional

description This is the name or description of the product. Optional

actualSalesUnitPrice

This is the amount, a single item was returned for. So
this value is equal to the rebooked regular unit price -
all discounts on the level of this product.
Note:
For RETURN-transaction, this value is always negative.

Optional

quantity This is the number of units, that were returned in this
line-item. Optional

extendedAmount

This is the actual amount, this item was returned for.
Accordingly, this value has to incorporate all given
discounts.
Note:
For RETURN-transaction, this value is always negative.

Mandatory

currencyCode Currency Code (e.g. EUR) of the extendedAmount. Optional

taxRate Percentage of tax applied for this line-item. Optional

7.2.2 TENDERITEMS ATTRIBUTE
In addition to the purchased articles,it may also be reasonable to document payment-
methods - especially, for the tracking of gift-cards and pay-with-points transactions. These
payment methods may be added to a list of tenderItems.

7.2.2.1 Minimal tenderItem
The minimal required set of information for a tender-item is the following:
 "tenderItems": [

Transaction Api Implementation Manual

Seite 21

 {
 "sequenceNumber": 3,
 "amount": 10.00
 }
]
with mandatory attributes:

Attribute Description

sequenceNumber Sequence number of the line-item. This value is incremented with every
item. It may start with 1 or continue the line-item sequence numbering.

amount This is the amount, that was paid in the format of the respective payment
method.

7.2.2.2 Maximal tenderItem
Again, the minimal setup is only providing the minimal functionality, which may be extended
by adding optional attributes. For example, it is common to allow multiple payment-
methods at the same time, which may be documented.
In the following, we will show maximal set of information, where also multiple payment
methods were used. The relevant fields for your implementation depend on the system and
program setup and need to be coordinated with the program manager.
 "tenderItems": [
 {
 "sequenceNumber": 3,
 "tenderType": "Loyalty",
 "tenderId": "PayWithPoints",
 "amount": 10.00,
 "currencyCode": "EUR",
 "taxRate": 19.00
 },
 {
 "sequenceNumber": 4,
 "tenderType": "GiftCard",
 "tenderId": "Geschenkkarte50",
 "amount": 50.00,
 "currencyCode": "EUR",
 "taxRate": 19.00
 },
 {
 "sequenceNumber": 5,
 "tenderType": "Cash",
 "tenderId": "Barzahlung",
 "amount": 39.90,
 "currencyCode": "EUR",
 "taxRate": 19.00
 }
]
The following attributes may be used (if not stated otherwise, every attribute may only be
used once):

Transaction Api Implementation Manual

Seite 22

Attribute Description Relevance

sequenceNumber
Sequence number of the line-item. This value is incremented
with every item. It may start with 1 or continue the line-item
sequence numbering.

Mandatory

tenderType
This attribute defines the payment method description in the
third party system.
It should be secured, that these descriptions are consistent.

Optional

tenderId
This attribute defines the payment method ID in the third
party system.
It should be secured, that these IDs are consistent.

Optional

amount This is the amount, that was paid in the format of the
respective payment method. Mandatory

currencyCode

Currency Code (e.g. EUR) of the amount.
Note:
Always use real currencies (or the equivalent of a pseudo-
currency in a real currency) here.
Example: If a amount of 5,00 EUR was paid with Loyalty
points, give the amount of 5,00 EUR (and not the amount of
burned points).

Optional

taxRate Percentage of tax applied for this payment method. Optional

Note:
Always keep in mind, that the sum of all payment-amounts should get the same value as the
bon-total-amount.

7.2.3 LINKEDTRANSACTION
If a transaction has to be linked to an older transaction (e.g. a return, which is mapped to the
original sale), the following attribute can be added:
 "linkedTransaction": {
 "linkType": "EXTERNALID",
 "linkValue": "bon_id_123456"
 }
with mandatory attributes:

Transaction Api Implementation Manual

Seite 23

Attribute Description

linkType

Identifier-Type (corresponding to the linkValue).
Available values:

• TRANSACTIONID
o Convercus-ID of original transaction
o e.g. db1234b5-67fd-8912-3c4e-56789ac57595

• EXTERNALID
o Original-ID of the transaction
o e.g. bon_id_123456

linkValue Value of the above linkType.

7.2.4 MAXIMAL EXAMPLE JSON
Summarzing everything, this is an example maximal JSON, with incorporates almost all
previous settings (valueTime was omitted as here, the booking is to be expected after
processing).
{
 "transactionType": "EARNTRANSACTION",
 "transactionTime": "2020-04-08T10:50:00+02:00",
 "externalId": "UniqueBonID",
 "amount": 99.90,
 "currencyCode": "EUR",
 "lineItems": [
 {
 "sequenceNumber": 1,
 "type": "SALE",
 "itemID": "2758221",
 "merchandiseGroupCode": "1201",
 "merchandiseGroupName": "Shoes",
 "merchandiseSubGroupCode": "120103",
 "merchandiseSubGroupName": "Sneakers",
 "description": "Test-Shoe",
 "actualSalesUnitPrice": 99.90,
 "quantity": 2,
 "extendedAmount": 199.80,
 "currencyCode": "EUR",
 "taxRate": 19.00
 },
 {
 "sequenceNumber": 2,
 "type": "RETURN",
 "itemID": "2758221",
 "merchandiseGroupCode": "1201",
 "merchandiseGroupName": "Shoes",
 "merchandiseSubGroupCode": "120103",
 "merchandiseSubGroupName": "Sneakers",
 "description": "Test-Shoe",
 "actualSalesUnitPrice": -99.90,
 "quantity": 1,

Transaction Api Implementation Manual

Seite 24

 "extendedAmount": -99.90,
 "currencyCode": "EUR",
 "taxRate": 19.00
 }
],
 "tenderItems": [
 {
 "sequenceNumber": 3,
 "tenderType": "Loyalty",
 "tenderId": "PayWithPoints",
 "amount": 10.00,
 "currencyCode": "EUR",
 "taxRate": 19.00
 },
 {
 "sequenceNumber": 4,
 "tenderType": "GiftCard",
 "tenderId": "Geschenkkarte50",
 "amount": 50.00,
 "currencyCode": "EUR",
 "taxRate": 19.00
 },
 {
 "sequenceNumber": 5,
 "tenderType": "Cash",
 "tenderId": "Barzahlung",
 "amount": 39.90,
 "currencyCode": "EUR",
 "taxRate": 19.00
 }
],
 "linkedTransaction": {
 "linkType": "EXTERNALID",
 "linkValue": "bon_id_123456"
 }
}

8 Burn Interface (PayWithPoints)
The possibility to make (partial) payments with earned points is a common feature in Loyalty
programs. In this chapter, we will explain how to implement this payment method using
Convercus Api.

8.1 Getting current Account Balance
Before payments with points can be made, it is necessary to get the current account
balance. There are two ways to get the balance.
The following request will respond the current amount of points on a certain account:
curl --location --request GET '{{api_url}}/accounts/{{accountId}}/balance' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'id-type: {{idType}}' \
--header 'Content-Type: application/json' \

Transaction Api Implementation Manual

Seite 25

whereas the following request (note the difference in the url) will respond the value of those
points in Euro as amount.
curl --location --request GET '{{api_url}}/accounts/{{accountId}}/balance/EUR' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'id-type: {{idType}}' \
--header 'Content-Type: application/json' \
The ladder option offers a shortcut for payment implementation as the (possibly not static)
calculation of the account balances financial value is already performed by the Convercus
System.
The used variables in the requests are the following

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{accountId}} ID of the account that will receive the transaction.
The ID has to be given in the format, that is dictated by the{{idType}},

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection bon-to-store is made.

{{idType}}

Identifier-Type (corresponding to the {{accountId}}).
Available values:

• APPCODE (e.g. A1B2C3D4E5)
• CARDCODE (e.g. V1W2X3Y4Z5)
• EXTERNALCODE (e.g. 123456780123)
• ID (account-identifier, e.g. 7d123457-bfa1-4a83-8213-123456789763)

8.2 PayWithPoints-Transaction
Like all api-bookings, paying with points is also handled via account-transaction.
Analogously, the following request has to be sent to burn points by paying with them:
curl --location --request POST '{{api_url}}/accounts/{{accountId}}/transactions' \
--header 'Authorization: {{jwt_token}}' \
--header 'interaction-id: {{interactionId}}' \
--header 'id-type: {{idType}}' \
--header 'Content-Type: application/json' \
--data-raw '{{body}}'

Transaction Api Implementation Manual

Seite 26

where again

Variable Description

{{api_url}}

Endpoint of the api.

• https://staging.convercus.io (Staging)
• https://api.convercus.io (Production)

{{accountId}} ID of the account that will receive the transaction.
The ID has to be given in the format, that is dictated by the{{idType}},

{{jwt_token}} The JWT-token, which has been generated by authentication.

{{interactionId}}

Unique Identifier of the cash machine (or virtual equivalent, e.g. online-
shop), which produced the receipt.
This ID has to be listed in the Convercus System as with this ID, the
connection bon-to-store is made.

{{idType}}

Identifier-Type (corresponding to the {{accountId}}).
Available values:

• APPCODE (e.g. A1B2C3D4E5)
• CARDCODE (e.g. V1W2X3Y4Z5)
• EXTERNALCODE (e.g. 123456780123)
• ID (account-identifier, e.g. 7d123457-bfa1-4a83-8213-123456789763)

{{body}} Body with PayWithPoints information as explained in the next subchapter.

8.2.1 PAYWITHPOINTSTRANSACTION-BODY
The minimal set of {{body}} information about payments with points is the following
{
 "transactionType": "PAYWITHPOINTSTRANSACTION",
 "amount": 5.00
}
with the following mandatory attributes

Attribute Description

transactionType Type of the transaction. For paying with points, always use the value
PAYWITHPOINTSTRANSACTION.

amount

Total amount, that should be paid with the corresponding amount of
points.
Important Note:
The value of this attribute is always given in terms of a currency (as this is a
payment method). It is not an amount of points. Be sure to implement a
way to convert points to financial value or get the account balance in your
currency via GET accounts/balance/EUR.

Transaction Api Implementation Manual

Seite 27

Once again, the minimal setup is only providing the minimal functionality (i.e. burn the
amount of points that’s worth the amout you want to pay with).
The following example will give a maximal set of PayWithPoints information. The relevant
fields for your implementation depend on the system and program setup and need to be
coordinated with the program manager.
{
 "transactionType": "PAYWITHPOINTSTRANSACTION",
 "reason": "Paying with Points",
 "transactionTime": "2020-04-30T10:50:00+02:00",
 "valueTime": "2020-04-30T10:50:00+02:00",
 "externalId": "UniqueBonID",
 "amount": 5.00,
 "currencyCode": "EUR",
 "linkedTransaction": {
 "linkType": "EXTERNALID",
 "linkValue": "bon_id_123456"
 }
}
The following attributes may be used (if not stated otherwise, every attribute may only be
used once):

Attribute Description Relevance

transactionType Type of the transaction. For paying with points, always
use the value PAYWITHPOINTSTRANSACTION. Mandatory

reason

Additional booking text for the transaction. This value
can be set to anything and may be used to transmit an
internal description / wording of the process (e.g.
PayWithPoints).

Optional

transactionTime

ISO 8601 datetime, when the payment was made
(usually this is the same as the datetime of the
corresponding receipt).
Either give the datetime in UTC (eg. 2020-04-
08T10:50:00Z or in local-time with timezone (e.g. 2020-
04-08T10:50:00+02:00 for CET with daylight-saving-time
or 2020-01-08T10:50:00+01:00CET).

Optional

valueTime

ISO 8601 value datetime of the transaction (i.e. the
datetime, when the booked transaction-points
become active).
Note:
If this field is missing, the valueTime will be set to the
time, when the transaction is processed in Convercus
system.
Do not fill this field unless you don’t want to have this
standard-situation.

Optional

Transaction Api Implementation Manual

Seite 28

externalId

Unique (over the program) Bon-ID. As a security
measure (don’t incentivate the same bon twice),
reoccuring bons with the same externalID are rejected
by the system, so make sure that every bon-id is
unique.
Note:
As an exception to the rule, PAYWITHPOINTSTRANSACTION
can have the same externalId as the EARN-transaction
they are connected to. This allows to use the same
bon-ID for the same receipt, even if EARN und BURN
are two separate requests.

Optional

amount

Total amount, that should be paid with the
corresponding amount of points.
Important Note:
The value of this attribute is always given in terms of a
currency (as this is a payment method). It is not an
amount of points. Be sure to implement a way to
convert points to financial value or get the account
balance in your currency via GET accounts/balance/EUR.

Mandatory

currencyCode Currency Code (e.g. EUR) of the total amount. Optional

linkedTransaction Link to an existing transaction, e.g. the original earn
transaction where the payment was made. Optional

linkedTransaction
/ linkType

Identifier-Type (corresponding to the linkValue).
Available values:

• TRANSACTIONID
o Convercus-ID of original transaction
o e.g. db1234b5-67fd-8912-3c4e-56789ac57595

• EXTERNALID
o Original-ID of the transaction
o e.g. bon_id_123456

Mandatory (if
linkedTransaction is
used)

linkedTransaction
/ linkValue Value of the above linkType.

Mandatory (if
linkedTransaction is
used)

Note, that the basic setup is similar to the EARN-case above. However, the usage of lineItems
and tenderItems is not meaningful here.

Transaction Api Implementation Manual

Seite 29

8.3 Connection between EARN and BURN
transactions

It is very important to note, that receipts where a (partial) payment is made with points
requires two transaction requests - one for the payments with points (BURN) and one for
the bon as a whole (EARN). If payments are tracked in the EARN-bon, make sure to add the
correct amount of the PAYWITHPOINTSTRANSACTION to the bon, e.g. add
 "tenderItems": [
 {
 "sequenceNumber": 3,
 "tenderType": "Loyalty",
 "tenderId": "PayWithPoints",
 "amount": 10.00,
 "currencyCode": "EUR",
 "taxRate": 19.00
 },
 ...
]

